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a b s t r a c t

An approximate analytic solution is obtained for the temperature distribution and freezing front propa-
gation in tissue. The solution accounts for blood perfusion and metabolic heat generation. The method of
solution is based on the introduction of assumed temperature profiles in the frozen and unfrozen regions.
The assumed profiles satisfy all boundary conditions as well as the governing heat equations at the mov-
ing interface. In addition, the steady state interface location is identically satisfied. Two cases are consid-
ered: freezing of a semi-infinite blood perfused tissue over a planar probe and around a spherical probe.
The accuracy of the solution is verified in two test cases with known exact solutions: the limiting case of
Neumann’s problem and a numerical solution to tissue freezing around a spherical probe. The present
theory represents a significant improvement over the quasi-steady model.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A key factor in cryogenics and cryosurgery is predicting the
propagation of the frozen front. This is critical in the application
of cryosurgical probes to selectively destroy diseased tissue. Tissue
freezing falls in a general class of problems variously known as
phase change, moving boundary and free boundary problems.
Examples of such problems are found in casting, energy storage,
nuclear waste disposal, food processing and cryopreservation.
The wide range of applications of phase change problems has gen-
erated a large number of publications. The most recent compre-
hensive bibliography lists 5869 references on melting and
freezing published during the past century and a half [1]. Yet there
are very few exact solutions [2–5]. The mathematical difficulty is
traced to the inherent non-linearity of phase change problems. Tis-
sue freezing is characterized by three factors: (1) blood perfusion,
(2) vascular architecture and (3) metabolic heat production. Blood
perfusion and metabolic heat cease in frozen tissue but remain ac-
tive in the unfrozen phase. The complex nature of heat transfer in
living organs and biological tissue precludes exact analytical solu-
tions. Assumptions and simplifications must be made to make the
problem tractable while capturing the essential features of the pro-
cess. Not surprisingly numerical techniques are extensively used in
solving tissue freezing problems [6–14].

An important consideration in the analysis of tissue freezing is
the formulation of an appropriate bioheat equation. One of the ear-
liest equations was developed and applied by Pennes in 1948 [15].
Although it does not take into consideration the vascular architec-
ll rights reserved.
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ture, it does account for blood perfusion and metabolic heat gener-
ation. Because of its simplicity and reasonable accuracy under
certain conditions, it has been extensively applied in heat transfer
analysis of biological tissue under thawing and freezing conditions.

There is a need for simple analytic solutions to examine the ef-
fect of important parameters on tissue freezing in general and pro-
gression of the frozen front in particular. A common simplification
which is extensively used in solving a variety of phase changing
problems is based on the quasi-steady approximation [16–20]. In
this model, the transient term in the heat equation can be ne-
glected under certain conditions. This vastly simplifies phase
changing problems and often eliminates the need for numerical
solutions. Justification for neglecting the transient terms is based
on the magnitude of the Stefan number which is the ratio of sensi-
ble to latent heat of fusion. The quasi-steady approximation gives
exact results for the limiting case of zero sensible heat correspond-
ing to zero Stefan number. This presents a severe limitation on the
accuracy of solutions to cryosurgery problems which usually in-
volve large temperature drops in the frozen phase leading to large
sensible heat. In a recently published paper, Lin and Zheng [21]
partially addressed this issue by approximately accounting for
the sensible heat to improve quasi-steady solutions to freezing of
a non-biological medium. This was accomplished by introducing
an assumed temperature profile in the frozen region. The assumed
profile makes use of Stefan’s exact solution. They applied this ap-
proach to three classical one-dimensional problems involving
freezing of non-biological material initially at the fusion tempera-
ture due to a sudden drop in an exposed surface temperature. The
three geometries considered are a semi-infinite planar region (Ste-
fan’s problem), a cylinder and a sphere. Comparison with exact re-
sults showed excellent improvement over the quasi-steady
solutions.
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Nomenclature

cs specific heat of frozen tissue
cb specific heat of blood
k thermal conductivity of unfrozen tissue
L probe thickness
L latent heat of fusion
qm volumetric metabolic heat production rate
r spherical coordinate
ro radius of spherical probe
St Stefan number, defined in (3)
t time
T unfrozen tissue temperature
Ta0 arterial blood supply temperature
Tf fusion temperature
Ti initial temperature
To surface temperature
wb volumetric blood perfusion rate per unit tissue vol-

ume
x Cartesian coordinate

Subscripts
b blood
i interface, initial temperature
s solid phase

Superscripts
m coordinates designation: 0 cartesian. 2 spherical
n exponent in the assumed unfrozen tissue temperature

Greek symbols
a thermal diffusivity of unfrozen tissue
b blood perfusion parameter, defined in (3)
c metabolic heat production parameter, defined in (3)
j conductivity-temperature ratio parameter, defined in (11)
h dimensionless temperature of tissue, defined in (3)
qb blood density
s dimensionless time, defined in(3)
n dimensionless distance, defined in(3)
ni(1) dimensionless steady state interface position
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In this paper we consider one-dimensional freezing of a blood-
perfused tissue. Two geometries are considered: (1) Freezing over a
planar probe and (2) freezing around a spherical probe. The Pennes
bioheat equation is used to account for blood perfusion and meta-
bolic heat generation. Although the method of Lin and Zheng can-
not be applied to this problem, a new approach is introduced to
improve the accuracy of the quasi-steady approximation in both
the frozen and unfrozen regions. Solutions to the temperature dis-
tribution and interface motion take into consideration blood perfu-
sion, metabolic heat generation, thermal diffusivity and Stefan
number effects.

2. Analysis

2.1. Problem statement and formulation

We consider one-dimensional freezing of tissue over a planar or
spherical cryosurgical probe. Fig. 1 shows a planar probe of thick-
ness L which is maintained at temperature To < Tf. The probe is sud-
denly applied to a semi-infinite tissue at uniform temperature Ti

which is above the freezing temperature Tf. Metabolic heat is gen-
erated throughout the tissue at a constant volumetric rate qm in the
unfrozen phase. Blood at arterial temperature Ta0 is supplied to the
unfrozen tissue at a uniform volumetric rate per unit tissue vol-
ume, wb. A frozen front forms instantaneously at x = 0. Fig. 2 shows
the same problem using a spherical probe of radius ro.
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Fig. 1. Planar probe.
2.2. Governing equations

We assume constant properties in each phase. Since metabolic
activity ceases once the tissue is frozen, the governing equation
in this layer is given by the classical heat equation. For the unfro-
zen tissue we use the Pennes bioheat equation [15]. The dimen-
sionless forms of these equations are given by

1
nm

o

on
nm ohs

on

� �
¼ St

ohs

os
ð1Þ

and

1
nm

o

on
nm oh

on

� �
� bh� c ¼ St

as

a
oh
os
; ð2Þ

where m = 0 is for Cartesian coordinates (planar probe) and m = 2 is
for spherical coordinates (spherical probe). Subscript s refers to the
solid phase (frozen tissue), a is thermal diffusivity and St is the Ste-
fan number. The dimensionless variables and parameters in the
Cartesian system are defined as

hs ¼
Ts � To

T f � To
; h ¼ T � Ta0

T f � Ta0
; n ¼ x

L
; s ¼ St

as

L2 t;

b ¼ qbcbwbL2

k
; c ¼ qmL2

kðTa0 � T f Þ
; St ¼ csðT f � ToÞ

L
: ð3Þ

Subscript b refers to blood, c is specific heat and L is the latent heat
of fusion. For spherical coordinates x is replaced by r and L by ro.
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Fig. 2. Spherical probe.
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2.3. Boundary and initial conditions

The dimensionless form of the boundary and initial conditions
are

hsð0; sÞ ¼ 0 ðCartesianÞ; ð4aÞ
hsð1; sÞ ¼ 0 ðsphericalÞ; ð4bÞ

hsðni; sÞ ¼ 1; ð5Þ
hðni; sÞ ¼ 1; ð6Þ
hð1; sÞ ¼ �c=b: ð7Þ

The initial conditions are

hðn;0Þ ¼ �c=b; ð8Þ

nið0Þ ¼ 0 ðCartesianÞ; ð9aÞ
nið0Þ ¼ 1 ðsphericalÞ: ð9bÞ

Conservation of energy at the interface gives

dni

ds
¼ ohsðni; sÞ

on
þ j

ohðni; sÞ
on

; ð10Þ

where j is defined as

j ¼ kðTa0 � T fÞ
ksðT f � ToÞ

: ð11Þ

Examination of the dimensionless equations shows that the prob-
lem is governed by five parameters: diffusivity ratio as/a, blood per-
fusion b, metabolic heat productionc, conductivity-temperature
ratio j, and the Stefan number St.

2.4. Simplified model: quasi-steady approximation

An exact analytic solution to this mathematical problem is not
available. Approximate solutions to phase changing problems have
been obtained based on the quasi-steady model in which the tran-
sient term in the governing equations is dropped. Quasi-steady
solutions are valid for Stefan numbers that are small compared
to unity. A small Stefan number corresponds to small sensible heat
compared to latent heat. Thus neglecting sensible heat leads to
overestimating interface location. Furthermore, quasi-steady solu-
tions do not account for the effects of Stefan number and thermal
diffusivity parameter as/a.

Eliminating the transient term in (1) and (2)and integrating the
resulting equations gives the solution to the planar and spherical
probes described in [16]. Of interest here is the solution to the
transient interface location ni(s). For the planar probe it is given by

s ¼ � b

j2ðbþ cÞ2
j

bþ cffiffiffi
b
p ni þ ln 1� j

bþ cffiffiffi
b
p ni

����
����

� �
: ð12Þ

For the spherical probe the solution is

s ¼ �1
c
ðni � 1Þ þ 1

2c2 ðbþ cÞ ln aþ bni þ cn2
i

aþ bþ c

� 1

2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p 1
c
ðb2 � 2acÞ þ b

� �

� ln
2c þ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2c þ b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p 2cni þ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2cni þ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
" #

; ð13Þ

where

a ¼ �1� j
bþ c

b
; b ¼ j

bþ c
b
ð1�

ffiffiffi
b

p
Þ; c ¼ j

bþ cffiffiffi
b
p : ð14Þ

We note that the interface solution to the planar probe depends on
a single parameter kðbþ cÞ=

ffiffiffi
b
p

. However, the solution to the spher-
ical probe depends on an additional parameter

ffiffiffi
b
p

.

2.5. Improved quasi-steady solution

The inherent limitations on quasi-steady solutions of phase
changing problems motivated the search for corrective measures
to improve the accuracy of the quasi-steady solution to the freez-
ing tissue problem. Since the Stefan solution does not apply to
metabolic heat production in a blood perfused tissue, the method
of Lin and Zheng cannot be applied to this case. A unique feature
of the tissue problem is the existence of a steady state condition
corresponding to s ?1. This is not the case with the Stefan and
Neumann problems. The exact steady state tissue temperature dis-
tribution and interface location can be easily determined.

To improve the quasi-steady solution of the tissue problem, a
new approach is developed that does not require the use of exact
solutions to related problems. Rather than solving the quasi-steady
equations, appropriate temperature profiles are assumed for the
frozen and unfrozen phases. The assumed profiles satisfy all
boundary conditions as well as the two transient heat Eqs. (1)
and (2) and conservation of energy at the interface (10). In addi-
tion, the assumed profiles insure that the steady state interface
location coincides with the exact solution. This approach is fol-
lowed in solving the two tissue freezing problems described above.
It should be pointed out that this method differs from the heat bal-
ance integral approach in which the assumed profiles satisfy the
integral form of the heat Eqs. (1) and (2).

2.5.1. Cartesian system planar probe
2.5.1.1. Assumed temperature profiles. Since the frozen region is fi-
nite while the unfrozen phase is semi-infinite, assumed profiles
take on different forms. The following polynomial profile is as-
sumed for the frozen tissue

hsðn; sÞ ¼ a0 þ a1
n
ni
� 1

� �
þ a2

n
ni
� 1

� �2

: ð15Þ

For the semi-infinite unfrozen tissue the following exponential form
is assumed

hðni; sÞ ¼ b0 þ b1 exp �b2
nn

nn
i

� �
: ð16Þ

The six coefficients a0, a1, a2, b0, b1 and b2 may be constant or func-
tions of ni(s) and the exponent n is constant. In addition to the four
boundary conditions on hs and h, three additional conditions are
needed. Two conditions are formulated based on the constancy of
interface temperature, the satisfaction of heat Eqs. (1) and (2) at
the interface, and conservation of energy (10) at the interface
n = ni. A third condition is based on the interface steady state solu-
tion ni = ni(1). Since the temperature of the frozen region at the
interface remains constant at all times, it follows that

dhsðni; sÞ ¼
ohsðni; sÞ

on
dni þ

ohsðni; sÞ
os

ds ¼ 0:

Solving the above for dni
ds and using (1) to eliminate

ohsðni; sÞ
os

yields

dni

ds
¼ � 1

St

o2hsðni; sÞ
on2

ohsðni; sÞ
on

: ð17Þ

Substituting (17) into (10) gives

ohsðni; sÞ
on

� �2

þ j
ohsðni; sÞ

on
ohðni; sÞ

on
þ 1

St
o2hsðni; sÞ

on2 ¼ 0: ð18Þ

Similarly, constancy of the temperature of the unfrozen region at
the interface, heat Eq. (2) and interface energy Eq. (10) give
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ohsðni; sÞ
on

ohðni; sÞ
on

þ j
ohðni; sÞ

on

� �2

þ 1
St

a
as

o2hðni; sÞ
on2 � b� c

" #
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ð19Þ

Finally, at steady state the interface becomes stationary and condi-
tion (10) simplifies to

ohsðni;1Þ
on

þ j
ohðni;1Þ

on
¼ 0: ð20Þ

Application of boundary conditions (4-7) gives

a0 ¼ 1; a2 ¼ a1 � 1; b0 ¼ �c=b; b1 ¼ 1þ c
b

� �
exp b2:

The assumed profiles (15) and (16) become

hsðn; sÞ ¼ 1þ a1
n
ni
� 1

� �
þ ða1 � 1Þ n

ni
� 1

� �2

: ð21Þ

and

hðn; sÞ ¼ � c
b
þ cþ b

b
exp b2 � b2

nn

nn
i

� �
: ð22Þ

Application of (21) and (22) to conditions (18)–(20) gives three
equations for a1, b2 and n:

a2
1 � j 1þ c

b

� �
na1b2 þ

1
St
ða1 � 1Þ ¼ 0; ð23Þ

� na1 þ j 1þ c
b

� �
n2b2 �

1
St

a
as

n2ð1� b2Þ � nþ bn2
i

b2

" #
¼ 0; ð24Þ

and

n ¼ a1ð1Þ
j½1þ ðc=bÞ�b2ð1Þ

: ð25Þ

Evaluating (23) and (24) at s =1 and combining the resulting equa-
tions with (25) gives three equations for a1(1), b2(1) and n. The
solution to the three equations gives the constant n

n ¼ 1þ 1
j½1þ ðc=bÞ� � bj½1þ ðc=bÞ�n2

i ð1Þ: ð26Þ

The exact solution to the steady state interface location ni(1)is eas-
ily determined and will not be detailed here. Setting the transient
terms in (1) and (2) equal to zero, solving the resulting equations,
satisfying boundary conditions Eqs. (4)–(7) and substituting into
interface condition (2) gives

nið1Þ ¼
1

j½1þ ðc=bÞ�
ffiffiffi
b
p : ð27Þ

Substituting (27) into (26) gives

n ¼ 1: ð28Þ

With n determined, MATLAB is used to solve (23) and (24) for a1 and
b2 as functions of ni.

2.5.1.2. Interface motion. To determine the interface location, (21)
and (22) are substituted into (10)

dni

ds
¼ a1

ni
� j 1þ c

b

� �
b2

ni
: ð29Þ

Solutions to a1 and b2 are substituted into (29) and the resulting
equation is integrated numerically using initial condition (9a) to
give the transient solution to the interface location.

2.5.2. Spherical system: spherical probe
The procedure leading to conditions (18) and (19) is repeated

using heat Eqs. (1) and (2) in spherical coordinates (m = 2). Thus
(18) and (19) are replaced by
ohsðni;sÞ
on

� �2

þj
ohsðni;sÞ

on
ohðni;sÞ

on
þ 1

St
o2hsðni;sÞ

on2 þ2
n

ohsðni;sÞ
on

" #
¼ 0;

ð30Þ

ohsðni; sÞ
on

ohðni; sÞ
on

þ j
ohðni; sÞ

on

� �2

þ 1
St

� a
as

o2hðni; sÞ
on2 þ 2

n
ohðni; sÞ

on
� b� c

" #
¼ 0: ð31Þ

The assumed profile in the frozen tissue takes the form

hsðn; sÞ ¼ 1þ a1
ni

n
� 1

� �
þ a2

ni

n
� 1

� �2

: ð32Þ

However, the temperature profile in the semi-infinite unfrozen tis-
sue, (16), is assumed to apply to both Cartesian and spherical sys-
tems. Application of boundary conditions Eqs. 4–7 to (16) and
(32) gives

a0 ¼ 1; a2 ¼ �
1þ a1ðni � 1Þ
ðni � 1Þ2

; b0 ¼ �c=b; b1 ¼ 1þ c
b

� �
exp b2:

The assumed profiles (32) and (16) become

hsðn; sÞ ¼ 1þ a1
ni

n
� 1

� �
� 1þ a1ðni � 1Þ

ðni � 1Þ2
ni

n
� 1

� �2

ð33Þ

and

hðni; sÞ ¼ �
c
b
þ cþ b

b
exp b2 � b2

nn

nn
i

� �
: ð34Þ

Application of (33) and (34) to conditions (30), (31) and (20) gives
three equations for a1, b2 and n:

a2
1 þ j 1þ c

b

� �
na1b2 �

2
St

a1

ðni � 1Þ þ
1

ðni � 1Þ2

" #
¼ 0; ð35Þ

na1 þ j 1þ c
b

� �
n2b2 �

1
St

a
as

n2ð1� b2Þ þ nþ bn2
i

b2

" #
¼ 0 ð36Þ

and

n ¼ �a1ð1Þ
j½1þ ðc=bÞ�b2ð1Þ

: ð37Þ

Evaluating (35) and (36) at s =1 and combining the resulting equa-
tions with (37) gives three equations for a1(1), b2(1) and n. The
solution to the three equations gives the constant n

n ¼ 1
½nið1Þ � 1�j½1þ ðc=bÞ� þ bj½1þ ðc=bÞ�½1� nið1Þ�n2

i ð1Þ

� 1: ð38Þ

The exact solution to the steady state interface location ni(1) for the
spherical probe is given by

nið1Þ ¼
ffiffiffi
b
p
� 1

2
ffiffiffi
b
p þ 1

2
ffiffiffi
b
p ð1�

ffiffiffi
b

p
Þ2 þ 4

ffiffiffi
b

p
1þ b

jðbþ cÞ

� �� �1
2

: ð39Þ
2.5.2.1. Interface motion. Interface motion is determined by substi-
tuting (33) and (34) into (10)

dni

ds
¼ � a1

ni
� j 1þ c

b

� �
nb2

ni
: ð40Þ

Numerical integration of (40) using initial condition (9b) gives the
solution to the spherical interface motion.



Fig. 3. Comparison with Neumann’s planar solution, as/a = 1.

Fig. 4. Comparison with Neumann’s planar solution, as/a = 10.
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3. Results and discussion

3.1. Solution accuracy

To evaluate the accuracy of the present theory, two test cases
are carried out. In the first, comparison is made with the limiting
case of Neumann’s solution. This is the exact solution to the classi-
cal problem of planar solidification of a semi-infinite region [2]. In
the second, comparison is made with a numerical solution to freez-
ing of blood perfused tissue around a spherical cryoprobe [16].

3.1.1. Test case 1: Neumann’s problem
This is a special case of the more general freezing problem of a

semi-infinite tissue. The improved quasi-steady solution to this
problem is obtained by setting blood perfusion parameter b = 0
and metabolic heat parameter c = 0 in Eqs. (23) and (24) to give

a2
1 � ja1b2 þ

1
St
ða1 � 1Þ ¼ 0; ð41Þ

� a1 þ jþ 1
St

a
as

� �
b2 ¼ 0: ð42Þ

The solutions to (41) and (42) give a1 and b2 as

a1 ¼ jðas=aÞ þ ð1=StÞ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

jðas=aÞ þ ð1=StÞ

s
� 1

" #
ð43Þ

and

b2 ¼
ðas=aÞa1

jðas=aÞ þ ð1=StÞ : ð44Þ

Substituting (43) and (44) into (29), integrating and using initial
condition (9a) gives the interface location

niffiffiffiffiffiffi
2s
p ¼ 1

St

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

jðas=aÞ þ ð1=StÞ

s
� 1

" #( )1
2

: ð45Þ

Note that in the definition of j in (11) blood supply temperature Ta0

is replaced by the initial temperature Ti. The exact solution to Neu-
mann’s problem is given by [2]

ðniÞexactffiffiffiffiffiffi
2s
p ¼ k

ffiffiffiffiffi
2
St

r
; ð46Þ

where k is the solution to the transcendental equation

expð�k2Þ
erfk

� j
ffiffiffiffiffi
as

a

r
expðk2as=aÞ

1� erfðk
ffiffiffiffiffiffiffiffiffiffi
as=a

p
Þ
¼ k

ffiffiffiffi
p
p

St
: ð47Þ

In the simplified quasi-steady model of Neumann’s problem the
temperature of the unfrozen phase instantaneously drops to the fu-
sion temperature. Thus the unfrozen phase plays no role in the
interface solution, which is given by

ðniÞquasi-steadyffiffiffiffiffiffi
2s
p ¼ 1 ð48Þ

To examine the accuracy of the present theory for improving the
quasi-steady model, the three solutions for the interface location
ni are plotted as a function of Stefan number in Fig. 3 for as/a = 1.
The error for the present and quasi-steady models increases with
increasing j and St. Nevertheless, the present theory gives signifi-
cant improvement over the quasi-steady solution. We examine
the case of j = 0.3 where errors are highest. Comparing the quasi-
steady solution with the present theory at j = 0.3 and St = 0.5, the
error decreases from 21% to 4%. At St = 1 the corresponding errors
are 36% and 5%, and at St = 3 the error drops from 81% to 7%. Clearly,
the quasi-steady solution deteriorates rapidly with increasing Ste-
fan number while the improved solution does not. The parameter
as/a reflects the contribution of the unfrozen tissue to interface mo-
tion. Fig. 4 gives the interface location for as/a = 10. While the qua-
si-steady solution deteriorates significantly, with errors at j = 0.3 of
80% and 270% for St = 0.5 and St = 3, respectively, the corresponding
errors of the improved solution are 9% and 10%. The special case of
j = 0 represents Stefan’s problem where the unfrozen region is ini-
tially at the fusion temperature. For this case as/a has no effect on
the interface motion.

3.1.2. Test case 2: spherical probe
In this test case the interface solution is compared with the

numerical solution to the freezing of tissue [16]. This solution takes
into account blood perfusion but neglects metabolic heat produc-
tion. Setting c = 0 in (35),(36),(38) and (39) gives

a2
1 þ jna1b2 �

2
St

a1

ðni � 1Þ þ
1

ðni � 1Þ2

" #
¼ 0; ð49Þ
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1
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a
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n2ð1� b2Þ þ nþ bn2
i

b2

" #
¼ 0; ð50Þ

n ¼ 1
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Fig. 6. Planar probe interface position, as/a = 1, c = 0.05, j = 0.15, St = 0.5.

Fig. 7. Planar probe interface position, as/a = 1, c = 0.1, j = 0.15, St = 0.5.
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The numerical solution of [16] is based on a typical cryoprobe
application of as/a = 7, b = 0.336, j = 1/7 and St = 0.517. Substitut-
ing into (51) and (52) gives ni(1) = 3.701 and n = 1.728. Using
MATLAB to solve (49) and (50) for a1 and b2 as functions of ni,
substituting into (40) and integrating numerically gives ni(s).
Fig. 5 compares the result of the present theory with the quasi-
steady solution and the numerical solution to the governing Eqs.
(1) and (2) presented in [16]. Since quasi-steady solutions are va-
lid for small Stefan numbers, it is not surprising that for this case
of St = 0.517 both quasi-steady and present theory give good re-
sults. Both approximate solutions converge to the exact steady
state interface location.

3.2. Parametric studies

In general, tissue temperature and interface location are gov-
erned by five parameters: as/a, b, c, j and the Stefan number St.
However, it is instructive to examine the relationship between St
and j. From their definitions in (3) and (11) we obtain

j ¼ k
ks

csðTa0 � T fÞ
L

1
St

ð53Þ

Except for Ta0, all quantities in the coefficient of St in (53) are tissue
properties. However, since the variation in blood supply tempera-
ture Ta0 is relatively small, the effect of j will not be examined as
an independent parameter.

Figs. 6–10 illustrate the effect of blood perfusion b, metabolic
heat c, Stefan number St and diffusivity ratio as/a on the inter-
face motion associated with a planar probe. Selected values for
these parameters are based on typical applications of cryoprobes.
These results show that quasi-steady solutions predict faster
interface motion than present theory. It should be recalled that
quasi-steady solutions always overpredict the interface location.
These results also show that increasing blood perfusion and/or
metabolic heat production slows down interface motion and has-
tens the steady state condition. This is a consequence of adding
more energy to the interface when these parameters are in-
creased. Comparing Fig. 6 with Fig. 7 and Fig. 8 with Fig. 9 illus-
trates the slowing down of the interface motion as c is increased
from 0.05 to 0.1. On the other hand, increasing the Stefan num-
ber has the opposite effect on interface motion, as indicated by
comparing Fig. 6 with Fig. 8 and Fig. 7 with Fig. 9. This follows
from the fact that an increase in Stefan number corresponds to
a decrease in latent heat of fusion leading to a faster moving
Fig. 5. Comparison with numerical solution of spherical probe. Fig. 8. Planar probe interface position, as/a = 1, c = 0.05, j = 0.037, St = 2.



Fig. 9. Planar probe interface position, as/a = 1, c = 0.1, j = 0.037, St = 2.

Fig. 10. Planar probe interface position, as/a = 10, c = 0.05, j = 0.037, St = 2.

Fig. 11. Spherical probe interface position, as/a = 1, c = 0.05, j = 0.15, St = 0.5.

Fig. 12. Spherical probe interface position, as/a = 1, c = 0.1, j = 0.15, St = 0.5.

Fig. 13. Spherical probe interface position, as/a = 1, c = 0.05, j = 0.037, St = 2.
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interface. The effect of thermal diffusivity ratio as/a on interface
location is determined by comparing Fig. 8 with Fig. 10. Increas-
ing as/a by a factor of 10 results in a small decrease in interface
location. The decrease ranges from 0.002% for b = 1.0 and
s = 15,000 to 7% for b = 0.1 and s = 5,000. Examination of
Neumann’s problem as well as all quasi-steady solutions shows
that increasing as/a results in a decrease in interface location.

Parametric studies of the spherical probe is shown in Figs. 11–
15. The effect of b, c, St and as/a on interface location is qualita-
tively similar to that of the planar probe. Nevertheless, comparing
the two geometries reveals significant differences for the same val-
ues of the governing parameters. Compared to the planar probe,
steady state interface location is smaller and is reached faster for
the spherical probe. However, interface speed is slower for the
spherical probe. The blood perfusion parameter and Stefan number
have a more pronounced effect on the planar probe than the spher-
ical probe.

It should be noted that the special case of b = c = 0 corre-
sponds to Neumann’s problem where a steady state does not ex-
ist. The trends in Figs. 6–15 are consistent with this limiting
case.



Fig. 14. Spherical probe interface position, as/a = 1, c = 0.1, j = 0.037, St = 2.

Fig. 15. Spherical probe interface position, as/a = 10, c = 0.05, j = 0.037, St = 2.
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4. Conclusions

1. The present theory provides approximate analytic solutions to
tissue freezing over planar and spherical probes. The solutions
account for blood perfusion and metabolic heat production.

2. Unlike quasi-steady solutions, the present theory accounts for
the Stefan number and thermal diffusivity ratio.

3. The solution to the temperature distribution in the frozen and
unfrozen tissue satisfies all boundary conditions as well as the
two heat equations at the interface.
4. The interface solution converges to the exact steady state inter-
face condition.

5. The accuracy of the present theory is verified by comparison
with Neumann’s exact solution and a numerical solution to tis-
sue freezing around a spherical probe.

6. The thermal diffusivity ratio as/a has a small effect on interface
location. An increase in as/a by a factor of 10 results in an
increase in interface location of less than 7%.

7. The effect of b, c, St and as/a on interface location is qualita-
tively similar for both planar and spherical probes. However,
blood perfusion and Stefan number have a more pronounced
effect on the planar than the spherical probe.
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